

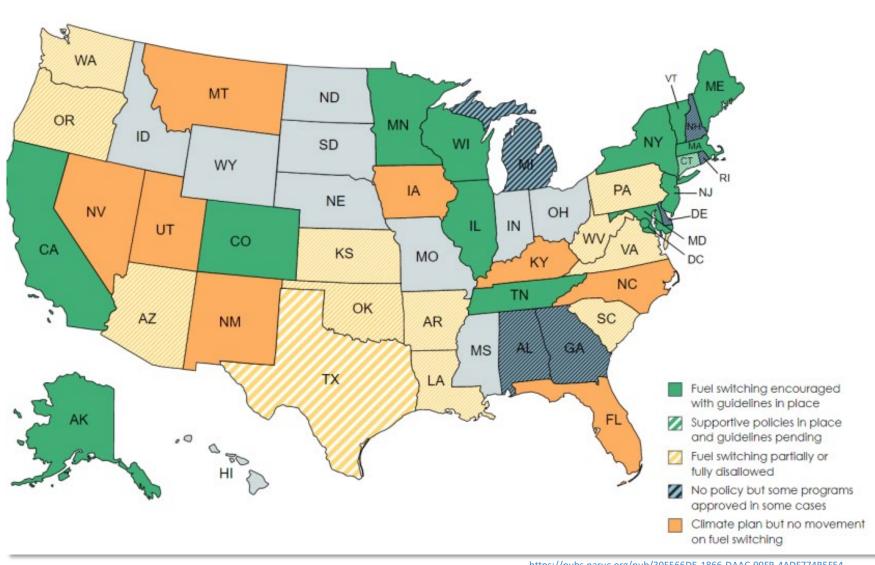
AESP Resilience Topic Committee

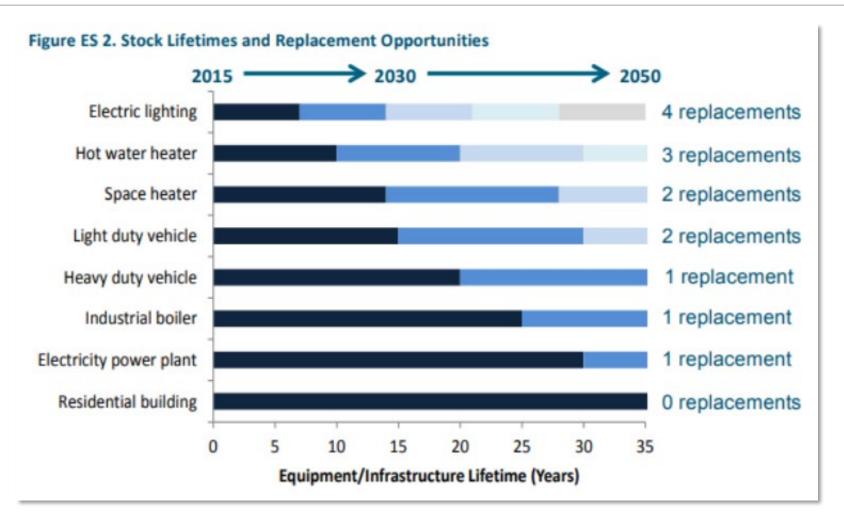
Natural Gas Energy Efficiency in the Age of Climate Goals

The Key Questions:

Will removing natural gas energy efficiency incentives:

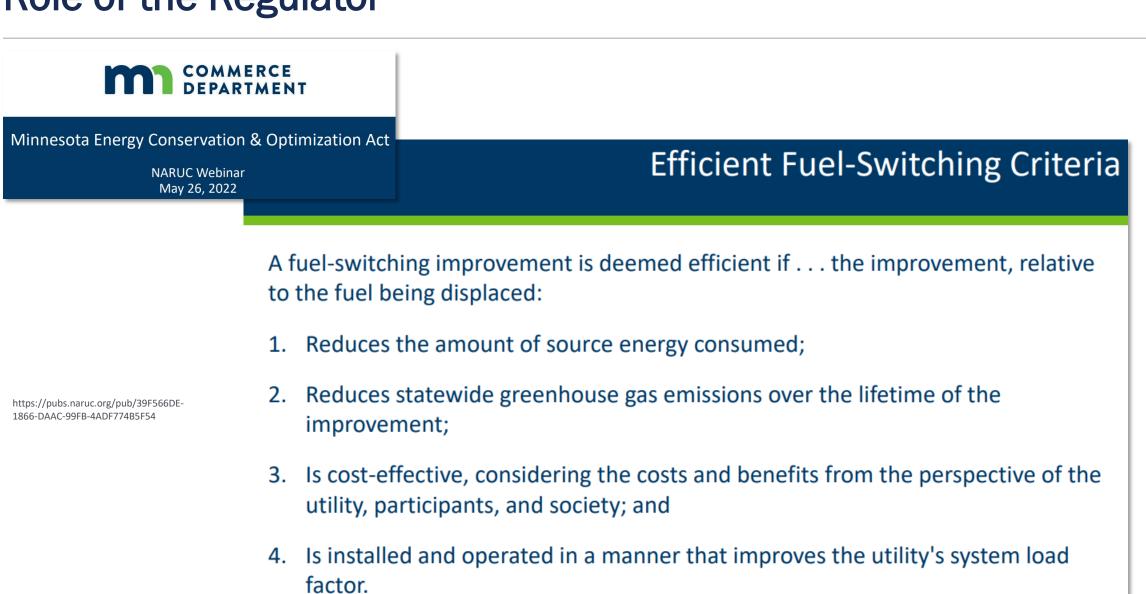
Result in customers choosing to electrify or choosing to purchase lessefficient natural gas equipment?


Result in greater inequity and/or higher energy burden?



SUPPORTING SLIDES

Fuel Switching Policy as of 2022



Runway to 2050

https://pubs.naruc.org/pub/39F566DE-1866-DAAC-99FB-4ADF774B5F54

Role of the Regulator

NEW YORK STATE	Services News G	Government					
Department of Public Service Search						Login	
			l	Post Comments	Subscribe To Service List	Request For Part	y Status
- Matter Master: 20-01201							
Matter Number:	20-01201		Case Number:				
Industry Affected:	Miscellaneous		Company/Organization:	New Y	ork State Department of	Public Service	
Matter Type:	Petition		Matter Subtype:	Non-S	itandard		
Title of Matter/Case:	In the Matter of the Performance Ma Improvement Process		Related Matter/Case No Assigned Judge:	<u>18-M-(</u>	<u>0084</u> , <u>14-M-0094</u>		
	Expand	li.					

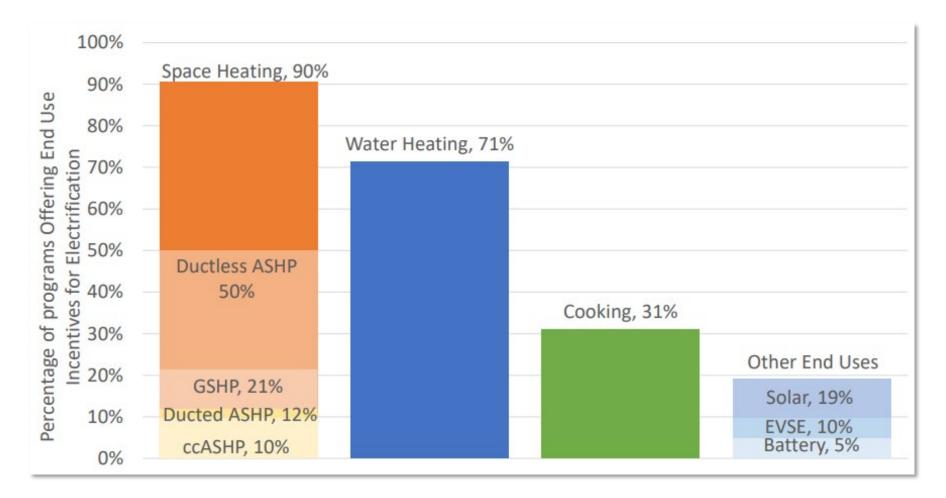
https://documents.dps.ny.gov/public/MatterManagement/CaseMaster.aspx?MatterCaseNo=20-01201

Role of the Utility

NATURAL GAS GOAL DETAILS

Our strategy for natural gas will reduce methane and carbon dioxide emissions associated with the production, delivery and final use of natural gas in buildings.

• By 2030, our goal is to reduce greenhouse gas emissions 25% below 2020 levels, achieve net-zero methane emissions and exclusively purchase certified natural gas for gas distribution and power generation.


• By 2050, our vision is to deliver gas service to customers with net-zero emissions

https://pubs.naruc.org/pub/39F566DE-1866-DAAC-99FB-4ADF774B5F54

Approach	Strategic Reduction Opportunities			
Reducing Methane	Purchasing natural gas with a certified low methane emissions rate			
Emissions from Production	Operational and pipe material changes to reduce emissions on our system			
and Delivery	Leak detection and repair			
Reducing Use	Expanding energy efficiency			
	All-electric new builds			
Departure Flootsification	Grid-integrated, managed electric water heaters			
Beneficial Electrification	Heat pump systems with natural gas backup for cooling and heating			
	District geothermal and other emerging technologies			
	Renewable natural gas			
Lower Carbon Supply	Hydrogen			
	Power to gas			
Negative Environment	Carbon offsets			
Negative Emissions	Direct air capture			

Available Programs

https://pubs.naruc.org/pub/39F566DE-1866-DAAC-99FB-4ADF774B5F54

Citing:

Cohn, C., and N. W. Esram. 2022. Building Electrification: Programs and Best Practices. Washington, DC: American Council for an Energy-Efficient Economy. aceee.org/researchreport/b2201

Phasing by Sector

Industry response to SAG recommendations in New York

April 21, 2022

To Whom it May Concern,

Restaurant Depot is a national wholesale cash and carry foodservice supplier based in Queens, NY that

has been supplying independent food businesses with quality product since 1990. We have participated in the Con Ed and National Grid in equipment programs since they launched in 2017 with National Grid

Since we first rolled out the program at 11 of our New York stores, w our equipment sales to Energy Star products. We went from hardly ee to selling almost exclusively Energy Star models to eligible customer equipment such as fryers and convection ovens and electric equipmen and ice makers. Since 2019, we have sold nearly 1,800 pieces of Ene customers with instant rebates. We can confidently attribute this shift programs because in our stores located in other states without these p lower-cost, less-efficient equipment. Independent foodservice custom conscious and so it is very challenging to sell equipment that is more to operate.

The COVID-19 pandemic has been extremely challenging for our cut and we have been able to offer significant instant rebates at the cash raiso save our customers money over time through reduced energy bill Most of our customers choose to purchase natural gas cooking equip costs of the equipment and the lower operating costs of gas versus els supplier partners do not currently offer electric cooking equipment th gas models in up-front price, operational performance, or ongoing energy costs.

Since we first rolled out the program at 11 of our New York stores, we have seen a dramatic shift in our equipment sales to Energy Star products. We went from hardly ever selling an Energy Star product to selling almost exclusively Energy Star models to eligible customers, including natural gas cooking equipment such as fryers and convection ovens and electric equipment such as refrigerators, freezers, and ice makers. Since 2019, we have sold nearly 1,800 pieces of Energy Star kitchen equipment to NY customers with instant rebates. We can confidently attribute this shift in sales to the instant rebate programs because in our stores located in other states without these programs, we typically only sell lower-cost, less-efficient equipment. Independent foodservice customers are extremely price-conscious and so it is very challenging to sell equipment that is more expensive up-front or over time to operate.

Reducing or eliminating rebates for gas kitchen equipment could lead to a majority of our customers going back to purchasing lower quality, inefficient gas equipment which costs them sometimes 30-40% more on their gas bills over time compared to the Energy Star m

A better approach for the independent foodservice customers in New expand the instant rebates programs for commercial natural gas and e of New York state. The rebates should be adjusted over time as new t mature in the market and the prices come down, but stopping gas reb: costly shift back to inefficient natural gas equipment.

Reducing or eliminating rebates for gas kitchen equipment could lead to a majority of our customers going back to purchasing lower quality, inefficient gas equipment which costs them sometimes 30-40% more on their gas bills over time compared to the Energy Star models.

Thank you for the opportunity to comment on this discussion. Please feel free to reach out to me with any questions at the contact information below.

Opinion **Dynamics**

Phasing by Sector

California Commercial Kitchen study undertaken by Energy Solutions as

part of Callerence of Calleren

Estimated Demand Cost Increase per Facility

Category	Existing Annual Peak Demand Cost	All-Electric Peak Demand Cost	Additional Annual Peak Demand Cost	
Quick Service	\$5,500	\$10,400	\$4,990	
Full Service	\$7,490	\$14,900	\$7,420	
Institutional	\$3,400	\$6,200	\$1,640	

Average Cost of Electrical Upgrades

Category	Average Number of Equipment Converted	Total Cost Per Site	
Quick-Service	5	\$123,000	
Full-Service	8.2	\$160,000	
Institutional	4.8	\$40,000	

Category	Number of Facilities	Total Market Cost (Billions)	
Quick-Service	40,477	\$4.99	
Full-Service	29,137	\$4.67	
Institutional	20,002	\$.81	
Total	89,616	\$10.46	

https://www.etcc-ca.com/sites/default/files/CalNEXT_Presentation_Aug29.pdf

Opinion **Dynamics**

Equity Always

Low-Income Multifamily Housing Characteristics Study

Kevin McGrath / Project Lead Whole Buildings, HVAC, Water Heating Electrical Infrastructure, High-Efficiency HVAC, etc. TSR

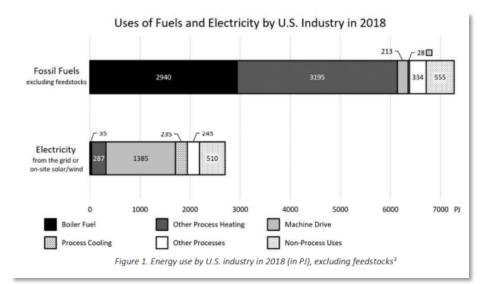
Veic Field Study High Level Findings to Date

- Most buildings with multiple electric subpanels but sizeable portion with only one main electric panel
- Panel upgrades will be needed for electrification in units served by gas
- HP HVAC penetration is low in both units and common areas; common area HVAC typically different from residential units
- Common window type (sliders) may limit opportunity for some newer HP HVAC technologies
- Most DHW central or small clustered, opportunity for large electrification upgrades but potential for transformer limitations
- Stucco is common exterior wall material and likely minimal insulation material
- Common area laundry rooms are prevalent, mostly existing gas dryers opportunity for replacement with HP dryers with infrastructure upgrades
- Potential lighting opportunities: less than half of properties with >75% LED penetration

Industrial Heat

alternate technologies in 2021						
	Natural Gas	Natural Gas	Electric Boiler	Heat Pump	Heat Pump	
	Steam Boiler	CHP		(80-100°C)	(100-180°C)	
Efficiency/COP	0.95	0.85	0.99	3.7	2.2	
Full load hours	2000	6000	2000	6000	6000	
(hours/year)						
Capex (\$/kW)	234	900	175	700	870	
Capex (\$/MWhth)	12	12	14	19	23	
Non-energy opex	6	3	3	2	3	
(\$/MWhth)						
Fuel/electricity	18	35	75	20	34	
cost (\$/MWhth)						
Total cost	36	50	92	41	60	
(\$/MM/btb)						

Table ES1. Cost and performance characteristics for industrial heat pumps and three


(\$/MWhth)

Capex = capital expenditures (excluding installation/integration costs). Non-energy opex = annual operational expenditures other than energy, such as staffing and maintenance. CHP = combined heat and power. COP = coefficient of performance, a measure of efficiency where 1.0 is complete conversion of input energy to usable heat. MWh = megawatt hours of fuel or electricity input. MWhth = megawatt hours of thermal (heat) output.

https://energyinnovation.org/wp-content/uploads/2022/10/Decarbonizing-Low-Temperature-Industrial-Heat-In-The-U.S.-Report-2.pdf

- U.S. Energy Information Administration, "2018 Manufacturing Energy Consumption Survey," 2021, https://www.eia.gov/consumption/manufacturing/data/2018/.
- U.S. Energy Information Administration, "Annual Energy Outlook 2022," 2022, <u>https://www.eia.gov/outlooks/aeo/tables_ref.php</u>.
 Fraunhofer Institute, *Mapping and Analyses of the Current and Future (2020 - 2030) Heating/Cooling*.

 Fraunhofer Institute, Mapping and Analyses of the Current and Future (2020 - 2030) Heating/Cooli Fuel Deployment (Fossil/Renewables), 2016, <u>https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report_wp1.pdf</u>.

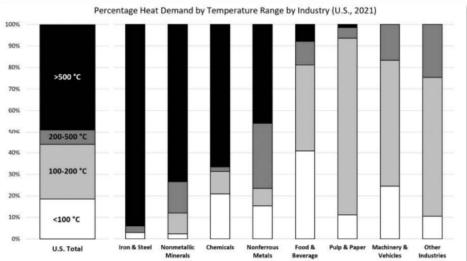


Figure 2. U.S. industrial heat demand by temperature range by industry in 2021. "Nonmetallic minerals" include cement, lime, glass, brick, tile, etc. Excludes heat for non-process uses, such as HVAC services for the comfort of workers.^{4,5}

ACEEE Recommendations

ACEEE Recommendations for Incorporating Beneficial Electrification into Utility Programs

Recommendations for Regulators

- Remove barriers to fuel switching incentives
- Value climate/GHG impacts in cost effectiveness testing

Recommendations for State Legislators, Government Leaders

- Set concrete building electrification targets within climate plans
- Provide funding for programs for hard-to-reach sectors
- Adopt clean energy/net zero building codes
- Provide workforce training and incentivize heat pump adoption

Recommendations for Utilities

- Expand program offerings
- Phase out incentives for fossil fuel equipment

Recommendations for Contractors

Receive education and training to install heat pumps

Recommendations for Homeowners and Property Managers

- Plan ahead for replacement of fossil fuel equipment
- Implement energy efficiency and weatherization alongside electrification

Recommendations to Support LMI Households

- Consider partnering with/ tailoring utility programs for affordable housing
- Electrification programs, measures, and incentives should be braided into existing energy efficiency programs

Source: Cohn, C., and N. W. Esram. 2022. Building Electrification: Programs and Best Practices (2022).

Thank you!

Erin Kempster ekempster@opiniondynamics.com

> ©2023 Opinion Dynamics. All Rights Reserved. All product or company names that may be mentioned in this publication are tradenames, trademarks, or registered trademarks of their respective owners.